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By analyzing the conditions for the existence on a space-time Ze of a global 
algebraic spinor field, we prove the following result, known as Geroch's theorem: 
A necessary and sufficient condition for ~ to admit a spinor structure is that 
the orthonormal frame bundle Fo(~) have a global section. Our proof, which 
does not use in any stage the complexification of  R1. 3 (the space-time Clifford 
algebra), is simple, requiring only the explicit construction of  the algebraic spinor 
and the spinorial metric within R1, 3 and elementary facts about associated bundles 
and the bundle reduction process. This is to be compared with the original proof, 
which uses the full algebraic topology machinery. We also clarify the relation 
of  the covariant spinor structure and Graf 's  e-spinor structure. 

1. INTRODUCTION 

Definition O. Let M be a four-dimensional, real, Hausdorff, connected, 
paracompact manifold. Let TM ( T ' M )  be the tangent (cotangent) bundle. 
A Lorentzian manifold is a pair (M, g), where g~ sec T*M x T*M is a 
Lorentz metric of signature (p, q) with p= 1 (or 3) and g=3 (or 1). A 
space-time ~ is a triple (M, g, V), where (M, g) is a noncompact, time- 
oriented and space-time-oriented Lorentzian manifold and V is the Levi- 
Civita connection of g in (M, g). For what follows we choose without loss 
of generality (p, q) = (1, 3). This point will be further discussed below. The 
principal fiber bundle (PFB) associated to T~ (or T*~) is 7r: Po(1, 3)(~) -> 3? 
and is equivalent to F (~) ,  the frame bundle. By Fo(~)= Pso+(1.3)(~) we 
denote the bundle of oriented Lorentz tetrads. 

Definition 1 (Bichteler, 1968). A covariant spinor structure (CSS) for 
Fo(Ze) consists of a PFB ~-~: Pspin+(1,3)(~)-->~ with group SL(2, C)= 
Spin+(1, 3) [~-Spin+(3, 1)] and a map 

s: Psp,n+(1,3)~ Fo(~) 
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satisfying the following conditions: 

(i) r = ~-~(p); Vp ~ Psp,n+(~.3)(~). 
(ii) s (pu)  = s (u)A(u);  Vp ~ Pspi,§ and A: SL(2, C)-> SO+(1, 3) is 

the double covering of SO+(1, 3) by SL(2, C). 

It is well known that a necessary and sufficient condition for the 
existence of the spinor structure is the vanishing of the second Stiefel- 
Whitney class of ~, i.e., w2(~) = 0. For Riemannian manifolds this result 
was proved first by Milnor (1963) and for Lorentzian manifolds by Bichteler 
(1968). See also Crumeyrole (1969), Lee (1973), Popovici (1970), and 
Bugajska (1979). 

It is quite clear from Definition 1 that if Fo(Sg) is trivial, then a CSS 
always exists. The main objective of the present paper is to prove the 
converse, i.e., to prove the theorem stated in the abstract. 

Definition 2. A spinor bundle for ~ is a vector bundle of the form 

g ( ~ )  = Pspin+(1,3)(~.~cP) X~ V 

where 15: Spin+(1, 3) -> G L ( V )  is a representation of SL(2, C) on some vector 
space V. 

Definition 3. A c-spinor field of type (p, V) on ~ is a section of S(~) .  
Alternatively, we can also define a c-spinor field of type (p, V) as an 

equivariant map ~b: Pspi,§ --> V such that 

~b(pu) = p (u -~)~(p) ,  Vp C Pspin+(l,3)(~), Vu ~ SL(2, C) 

Definition 4. The (undotted) two-component c-spinor field (Weyl 
spinor field) corresponds to V = C 2 (the two-dimensional complex space) 
and p the D 0/2"~ representation of SL(2, C)=  Spin+(1, 3) (Figueiredo et 
al., 1990). 

Now, in Figueiredo et al. (1990) we study in detail how to represent 
all types of covariant spinors (c-spinors) and corresponding spinorial 
metrics used by physicists (Pauli c-spinors, Dirac c-spinors, two-component 
undotted and dotted c-spinors) within the Clifford algebras R3.o (the Pauli 
algebra), R,,3 (the space-time algebra), R3.1 (the Majorana algebra), and 
R4,~ (the Dirac-algebra) [for details of the notation see Figueiredo et al. 
(1990)]. The object that represents a given c-spinor in a given Clifford 
algebra we call an algebraic spinor (a-spinor). Algebraic spinors do not 
need in general to be elements of a minimal left (or right) ideal in the 
appropriate Clifford algebra. 

Indeed, Dirac c-spinors are represented in R3,1 by Clifford numbers 
that do not belong to a minimal ideal (Figueiredo et al., 1990). However, 
as shown in detail in Figueiredo et al. (1990), all c-spinor fields of physical 
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interest can be represented as elements of a minimal left (or right) ideal in 

~3,0 + (=R1,3) and ~1,3 (~1+3 denotes the even subalgebra of R1,3). 
In particular, given the orthonormal frame {Eo, El,  E2, E3} of  R 1'3 

(Minkowski space), the (undotted) two-component c-spinors can be rep- 
resented by the elements of the ideal I=R~,3e, where e=l(l+E3Eo) is 
simultaneously a primitive idempotent of ~3,0-~ R 1+,3 and R1,3. 

All this suggests the following. 

Definition 5. A real spinor bundle of ~ is a bundle 

S ( ~ )  = Pspin+(1,3)(o~) Xp M 

where M is a left module for R1,3 or R~,3 and p: Spin+O, 3)~  SO+(1, 3) is 
the representation given by left multiplication by elements of Spin§ 3) c 
R[,3 (Figueiredo et aL, 1990; Blaine Lawson and Michelsohn, 1983). 

It is quite clear from the construction of ! = R~,3e that when M =  !, 
S(& o) represents S (~ )  with p the D (1/2'~ representation of SL(2, C). We 
have the following statement. 

Definition 6. An algebraic spinor field (ASF) is a section of S(~) .  

Definition 7. A complex spinor bundle for 5r is a bundle 

Sc(,,~) = Pspin+0,3) • Mc 

where p: Spin§ 3) ~ SOt( I ,  3) is the representation given by left multipli- 
cation by elements of Spin+(1, 3)= R1+,3 and Mc  is a complex left module 
for R1,3| = R4,1 = C(4). 

Now, given that R1,3 can be considered as a module over itself by left 
multiplication l, we are naturally led to the definition of the following real 
spinor bundle, which we call the real spinor-Clifford bundle. 

Definition 8. (~gSpin+(1,3)(~) ~--- Pspin+(1,3)(~.~) X~ ~l,3- 

It is quite clear that Clspin+(l,3)(~ ) is a "principal N1,3 bundle," i.e., it 
admits a free action of Nl+3 on the right. Pspi,+(1,3)(~)~ CCgspi,+(1,3~(ZP ) is 
natural embedding which comes from the natural embedding Spin§ q) = 
{u s N~,ql ~u = 1} valid forp  + q - 5 (Figueiredo et al., 1990). From the above 
it is quite clear that the properties of the real spinor bundles for LP can be 
studied in (~{Spin+(l,3)(o,(ff), since, in particular, dotted and undotted two- 
component spinor fields and the Dirac c-spinor fields can be represented 
as appropriate ideal sections of CCgSp~,+(1,3)(Sf). We shall show explicitly in 
Section 2 that from the condition for the existence of a global two-component 
a-spinor field in cCgsp~,+(1,3)(~) a proof of Geroch's theorem results. It is 
important to remark that qggSp~,+(1,3)(dg) is not the so-called Clifford bundle 
(Popovici, 1976; Figueiredo et al., 1990; Graf, 1978; Blau, 1987). Indeed, 
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the Clifford bundle cCE(~), which always exists independently of the 
existence or not of the CSS, is given by the following statement. 

Definition 9. ~r ~ )  = Pso+(1,3)( ~ )  xpc •1,3, where 

Pc: SO+(1,3)-> Aut(R1,3) 

Now, if we remember that there exists a representation 

Ad: Spin+(1, 3 ) ~  Aut(R~,3) 

given by Ad~O = uOu -~ for u ~ Spin+O, 3) and r ~ R1,3 and that Ad_~ = Id = 
1, we see that this representation reduces to a representation of SO+(1, 3) 
that is exactly pc- Then, if the manifold ~ admits a spinor structure, we 
can also write 

~ (  ~ )  = Pspin+(1,3)(~f) X Ad al,3 
This shows the difference between cr and cgEsp~.+o,3)(~). 

We end this long (but necessary) introduction with the remark that 
explicit construction of the two-component a-spinors in R~,3 is presented 
in Appendix A. The description of the two-component a-spinor fields in 
cr is done in Appendix B. 

2. GEROCH'S  T H E O R E M  

Our objective in this section is to prove the following result. 

Theorem. Let ~ be as in Definition 0. Then a necessary and sufficient 
condition for ~ to admit a spinor structure is that the orthonormal frame 
bundle Fo(~) have a global section. 

Proof: 
(i) We already observed that it is obvious from the definition of CSS 

(Definition 1) that if Fo(~) is trivial, then a CSS always exists. We now 
prove the converse. 

(ii) We start by observing that if Pspin+(1,3) exists, then there also exist 
all possible spinor bundles and also the real and complex spinor bundles 
as defined in Section 1. In particular, Cr247 ) exists and has a global 
section (Choquet-Bruhat et al., 1982). 

(iii) We now study the conditions for the existence of a two-component 
algebraic spinor in the real spinor-Clifford bundle CC/Sp~.+(x,3)(.T ). 

Given that any space-time admits a global timelike vector field eo (Sachs 
and Wu, 1977), we consider a local section ha of Fo(~) given by the local 
trivialization ~b~: U. x S O + ( 1 , 3 ) - ~ r ~ I ( U . )  [ U . c ~ ] ,  where ha(x) is a 
positive-oriented tetrad in ~r71(x), x ~ ~, where Co(X) is the first vector of 
the tetrad. Let h a be another local section of Fo(~) and let e'o(X) be the 
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first vector of  the tetrad in ~'~-l(x). For x ~ U~ fq Us, there exists only one 
g e SO§ 3) such that ho(x)= h~(x)g. As we are supposing the existence 
of  a spinorial structure in ~,  then to each g c SO§ 3) 3 + u ~ Spin§ 3) 
such that w = u v u  -1, v ,w~Tx~=-Rl"3cR1,3 ,  which is the fiber over x 
of  the real spinor bundle (~$pin+(1,3)(o~ff)= Pspin+0,3)(~)• ~1,3 (we have 
identified as usual ~1,3 with its image in R1,3). (See Appendix B.) 

(iv) As shown in Appendix A, in ~l,31x a two-component a-spinor field 
is determined by the idempotents e~ =�89 + e3(x)eo(x)] in ~b~ and by e'~ = 
�89 e3(x)eo(x)] in ~b~, where e3(x) and e'3(x) are, respectively, the third 
vectors of  the tetrads h~ and h e. In order for ex and e" to define the same 
ideal in the fiber over x, it is necessary that 

~1,3 ex _ t - Rl,3ex 

This is obviously necessary for the spinor field to be uniquely defined in 
U~ A U s. Now, 

R1,3etx = R1,3Uex u - l ~ R I , 3 e "  = R 1 , 3 e x u  -1  E R1,3elx 

and since ex is a primitive idempotent and exu -1 is also an element of  a 
minimal right ideal, we get exU-l~ exR1,3 n R1,3- H, where H is the quater- 
nion field (Figueiredo et al., 1990; Porteous, 1981). Then e x u - l = ~ c H ~  
uexu-1 = uOex ~ uexu-1 = ex, since ue~u-1 is also a primitive idempotent. We 
then have 

e" = ex and uex = exu 

Since ex = �89 + e3(x)eo(x)], we have 

ue3(x)u -l= e3(x), ueo(x)u -1= eo(x) 

This then implies a reduction of  the group SO§ 3) of Fo(~)  to SO(2) -- S 1. 
(v) Observe that, as shown in Appendix B, we have an "a-spinorial  

metric" defined in Ix = ff~l,3ex. Since we have a spinorial structure in ~q that 
preserves the ideal Ix (permitting the definition of an a-spinor field), it must 
preserve also the spinorial metric, i.e., we must have 

el(x)eo(x) = e~(x)eo(x)~e~(x)  = el(x) 

This means that choosing this direction, it will be fixed for all 
p ~ ~ - l ( x )  c Fo(~).  

(vi) Finally, given that ~ is time and space-time oriented, we can 
choose e2(x) in a unique way in ~b, and then e'2(x) = e2(x) for e~(x) in the- 
Then, the structural group of Fo(~)  reduces to the identity and the theorem 
is proved. �9 
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3. GRAF'S (1978) e-SPINOR STRUCTURE 

In this section, unless specified, ~ is a general Lorentzian manifold of  
signature (p, q). 

Definition 10 (Graf). An e-spinor structure is a nontrivial e-cross 
section of the Clifford bundle ~E(~)  such that e is an idempotent of  global 
minimum rank. 

The global e-rank is defined by 

rank e = max(rank ex) 
x c ~  

where rank ex is the rank of the O Aa(RP'q)-morp hism, e: ~b --> ~be, where 
GAd(~p'q) is the exterior algebra of ~P'q (Figueiredo et al., 1990; Rodrigues 
et al., 1989). 

Given an e-spinor structure such that rank e is minimal for almost all 
x ~ Sg, we say that we have an "elementary e-spinor structure." Note that 
e = 1 defines a trivial e-spinor structure. 

Definition 11 (Graf). Given two global idempotents e and e', we say 
~that the e-spinor structure and the e'-spinor structure are equivalent if there 
exists an invertible cross section u with e ' =  ueu' such that u induces an 
automorphism of  SO(p, q) [i.e., u ~ Spin+(p, q)]. 

Definition 12 (Graf). An e-spinor field on ~ / ( ~ )  corresponding to a 
given e-spin structure is a cross section ~b of qgE(~) such that ~be = ~b. 

Graf  (1978) states that the existence of  an elementary e-spinor structure 
does not impose any global restrictions on ~. This is not true. Indeed, as 
every Lorentzian space-time ~ admits a timelike vector field eo, then the 
global primitive idempotent �89 +eo) defines naturally an "elementary e- 
spinor structure" and this structure does not imply any obstruction for 
Fo(~).  Then the ~ = �89 + Co) spinor structure always exists even if w2(~) ~ 0, 
since ~E(~)  always exists. When (p, q) = 1, 3, if ~b ~ sec ~E(~)  is such that 
~b�89 + eo) = ~b, then ~b is a Dirac-spinor field, as proved in Figueiredo et al. 
(1990). However, if we want to have a cross section ~ ~ sec ~E(~)  that is 
a Weyl e-spinor field (representing a two-component Weyl c-spinor field) 
equipped locally with the spinorial metric (see Appendix A), we need a 
global minimal idempotent �89 + eoe3), where eo is a global timelike field 
and e 3 is a global space field. This new e-spinor structure is not equivalent 
to the preceding one according to Definition 11, even if both idempotents 
are of global minimum rank equal to 8. Moreover, the existence of  the cross 
section ~ equipped with the spinorial metric implies that Fo(*~) is trivial. 

At this point we must emphasize that Bugajska (1979) also found that 
the condition for the existence of a Weyl e-spinor field is that Fo(~)  must 
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be trivial. However, she uses a complex Clifford bundle, i.e., the bundle 
~ ( ~ )  = Pso+(1.3) x R4,1, where ~4,1 is the complexification of R1,3 (or R3.~) 
(Figueiredo et al., 1990). 

In this way the construction of Bugajska does not imply directly 
Geroch's  theorem. To obtain Geroch's theorem, we must use <r ) 
and study the conditions for the existence of  a cross section that is a global 
Weyl a-spinor field as we did above. 

The above discussions we believe make clear the distinction between 
the covariant spinor structure (Definition 1) and Graf 's  e-spinor structure 
(Definition 10). 

Observat ion 1. Graf  (1978) states that in a Lorentzian manifold of  
signature p = 3, q = 1, an everywhere timelike vector field eo with g(eo ,  eo) = 
- 1  does not induce any nontrivial spinor structure within Pso+(3,1) • ~3,1, 
despite the fact that there are local e's with minimal rank equal to 4. This 
statement is, of  course, true. However, we can avoid this difficulty simply 
by using the twisted-Clifford bundle, which is the construction of  Atiyah 
et al. (1964). 

In this construction we associate with the tangent space Rp, q the Clifford 
algebra R q'p using the twisted Clifford group (Figueiredo et al., 1990) by 
means of  the twisted adjoint representation. 

Using the Clifford bundle for p = 3, q = 1 as defined in this paper, the 
conditions for the existence of  a Majorana spinor results from the form of  
the global idempotent (Figueiredo et al., 1990) equal to the conditions found 
in Section 2. 

4. CONCLUSIONS 

In this paper  we present a Clifford algebra approach to the spinor 
structure of  space-time. We showed that, using the real spin-Clifford bundle 
~Esp~n+(1,3)(~), a proof  of  Geroch's  theorem follows once we determine the 
necessary and sufficient conditions for a global section of  cr to 
be a Weyl a-spinor field. 

We also discuss Graf 's  notion of  e-spinor structure, showing the rela- 
tion of  this concept with the covariant spinor structure. We show that, 
contrary to Graf 's  statement, there are e-spinor structures that imply 
obstructions to Fo(Le). 

We also note that Bugajska's determination of  the conditions for the 
existence of  a Weyl spinor field is indeed the determination of  the conditions 
for the existence of  a Weyl e-spinor field as a global section ~o~ = r of  the 
complex Clifford bundle c~a(~)  = Pso+(l,3) • R4,1" Then, Bugajska's con- 
struction does not imply a proof  of  Geroch's  theorem. She instead obtains 
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that from her construction a definition o f  spinor structure fol lows that is 
identical to the covariant spinor structure of  Definition 1. 

A P P E N D I X  A 

Let C 2 and *C 2 be two copies of a two-dimensional complex vector 
space. 

A1. The contrariant (undotted) two-component spinors are the ele- 
ments of the vector space C 2 where there is defined a "c-spinorial metric" 

/3: C2xC2+C, /3(0, r =-/3(r 0) 
The c-spinorial metric/3 is clearly invariant under the action of the group 
SL(2, C), i.e., given u E SL(2, C), we have 

0 ~ u 0 ,  r --> ur and /3(O,r  ur  

In the canonical basis of (2 2 we have the following matrix representation: 

(r ' ) .  
/3(0, r  = 0 ' ~ r  r = r , 0 '  = (0 ' ,  02); 

( 10) cr ; 0,, r  = 1 , 2 E C  

The spinorial metric/3 determines a canonical isomorphism between 
C 2 and *C 2, given by/3: C2~*C2; 0+f l (O ,  .) =*0- 

A2. The "covariant" (undotted) two-component spinors are the ele- 
ments of *C 2, where there is defined a "c-spinorial metric" */3: *C2x *C2+ 
c; */3(*0, *r =/3(0, r 

The "c-spinorial metric" */3 is clearly invariant under the actions of 
SL(2, C) i.e., *0 -~ s 0 u - 1 ,  :~r --> $ r  u-1 and */3($01/-1,  :gr = =~/3('0, :~r 

In the canonical basis of *C 2, we have "0  = (01,02) -= (O 2, - O 1) 

Observation. In Figueiredo et al. (1990) we used the notations C 2 and 
o A 

@ 2 for *C 2 and "0  and called covariant spinor (c-spinors) objects of complex 
vector spaces which transform with a well-defined rule under the action of 
a given spin group. In this sense both @ and "0  are c-spinors. 

Let R1, 3 be the space-time algebra [see Figueiredo et al. (1990) for 
details of the notation], i.e., the real Clifford algebra generated by the 
vectors E , , / z  =0,  1, 2, 3 E R1"3~ R1,3 such that 

E~E,, + E,,E~, = 271~,,, 

70o=1; ~ii=1, i = 1 , 2 , 3 ;  r / ~ = 0 ,  /x#  v 
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Let R1+3~3,0 be the even subalgebra of  R1, 3. Then we can easily show 
(Figueiredo et al., 1990) that E =1(1 + E3E0) is simultaneously a primitive 
idempotent of  both R1,3 and R3,0. 

A3. The contravariant (undotted) two-component algebraic spinors 
are the elements of  the minimal left deal I = R~,3E. 

The spinor basis in I is {SA, A = 1, 2; $1 = E, $2 = EtEoE} and we have 
the following representation of  ~ in the spinorial basis: (:1 :) 

I~b=EOI+EIEoE~ b2~ 2 ~C(2) ~b A, A = I ,  2 e C  

Consider the space I -  = (R~,3E) -,  where ~ is the composition of the main 
automorphism and the main antiautomorphism in R1,3 (Figueiredo et al., 
1990). Then, give ~b c / ,  and being/~ = 1 - E, we have 

I-~d/-=E~bl-EEIEoqj2~--(_Ooz ~1) e C(2) 

A4. The covariant (undotted) two-component algebraic spinors are the 
elements *~b = E1EoqJ- ~ *I = ER~,3, 

*I~*~b=E, Eo~b-=EE1EoOt-E~b2~--(-$O z 001 ) =($01 $02) ~C(2)=*C(2)  

In I = ~1,3 E we define an a-spinorial metric fi that mimics the c-spinorial 
metric fl defined in A1. 

A5. The a-spinorial metric fi is 

fi: I x I ~ C  by fi(~, ck)=-fi(~b, O)=2(EoElOck)o 

where (')o means the scalar part of  the Clifford number (Figueiredo et al., 
1990). 

Note that/3 is Spin+(1, 3) = SL(2, C) invariant in the following sense. 
Let u ~ Spin+(1, 3). Then u-u = 1 (Figueiredo et al., 1990). It follows that 
/~(u~, u4,):/3(~0, ~). 

For brevity in what follows we call the elements of  I and *I  a-spinors. 

APPENDIX B: ~Isp~.+(,.3)(,.~) = Psp~+tm)(=~) • R,,3 

B1. The real spinor bundle ~YSpin+(1,3)(~) is a "principal R1,3 bundle," 
in the sense that we have a right action of  RI,3 defined in each fiber 
a r - l ( x ) = R m .  We describe explicitly this action in the following. 
Pspin+(m)(Ag)--> Cr163 is a natural embedding, as a consequence of  
the embedding Spin+(1, 3) = R~.a ~ R1,3 (Figueiredo et al., 1990). 
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B2. Let F0(~) be the bundle of orthonormal frames [ F o ( ~ ) =  
Pso+(1,3)(~)] and let {U~} be a covering of ~.  Let h~ : U~--> w-l (u~)  be a 
local section given by the local trivialization/.~ : w-~(U) --> U~ x SO+0,  3). 
Then h~(x) is an oriented tetrad in r We put h~(x)= 
(Co(X), el(x), e2(x), e3(x)). Let he: U s -> r be another local section. 
We put he(x) = (e~(x), e~(x), e~(x), e~(x)). Now, suppose U~ f) U s # | 
Then there exists a unique g s SO+(1, 3) such that ha(x ) = h~(x)g. But since 
we are supposing the existence of a spinorial structure in ~ ,  there exists 
+ueSpin+(1,3) such that +uv(+u) - l=w,  with V, w E T x ~ = R  1"3. Then, 
he(x) = uh,~(x)u -~ imagining T x ~ = R  1'3 canonically embedded in R1,31 x = 

R1,3, the fiber over x in Cgfsp~.+o.3)(Z~). 

B3. Let tp.: r U~ xR1,3 and ~ba: ~'~-1( U) --> Ua x~l ,  3 be two 
local trivializations of Cg~s.~.+o.3)(~). Let V: ~ U--> ~-~-~(U) be a local 
section, given by 

q , (x )  = (x, ~ ( x ) )  

The homeomorphisms ~b~ and ~b a have the form 

,1,,~ ( , t , (x))  = Or~( ' I ' (x)) ,  , L ( r  = (x, q,,,(x)) 

and 

Oot (X)  : r o ~ l ~ / a ( X )  :/A[~./a ( x )  

u = ~ o ~ 1  ~ Spin+O, 3); ~ ,  ~-]a E al.  3 

Now, associated with h~(x) we have the primitive idempotent ex= 
�89 1 + e3(x)Co(X)], which defines the ideal Ix = R ~.3 elx. The canonical spinorial 
basis of Ix is {SA(X), A = 1, 2}. Associated with he(x) we have the primitive 

t 1 ex-~[l+e~(x)e~(x)] ,  which defines the ideal ' -  + ' I x -R i ,3ex  and in general 
Ix # I'x. The canonical basis of I"  is {s~(x), A = 1, 2}. A 

We put ck~(ez)=E~, which is by definition the canonical basis of 
R1"3c R1,3. We put tk~(e~)--E~,' 

v E'~ = uE~,l., -1 = L~,e~, Lz ~ SO+(1, 3) 

Also ~b~(sa)= S~, the canonical basis of I = R1.3E, E =�89 and 
la I i ~ba (sk) = S~  where SA is the canonical basis o f /  = R1,3E, E '=  �89 + E'3E'o). 

Observe that 

fba(SA) = S~,  S~ = uS~ ~ A(u)~S~ e I 

q~(S'A)= S'A ~, S'A~= uS'A~= A(u)~S'sa e I ' 

but 

S ~  = uS~u -~ 
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134. If  '~: U,~ ~ (~gSpin+(1,3)(~) is such that ~(x)e,: = 0(x) for all x ~ U~, 
we call ~ a local "a-spinor field." 

BS; Here we consider the right action ~ , .  Let ~:  U,~ ~ (~gSpin+(1,3)(~) 
be a section. We define the right action of u ~ Spin+(1, 3)--- RI+3 by 

R~ : ~l,31x --~ ~l,3lx 

RuO(x) = O(x)u  -1 

Now, since for an a-spinor field ~b(x) = O(x)e~, we have 

O'(x) = O(x )u - '  = O(x)exu- '  = O(x )u - '  e" = 4;(x)e" ; e" = ue,,u-' 

This means that the right action R, is not ideal preserving, but as R, acts 
freely o n  ~l.31x, we have that 

Ru[R ..... : Ix--> I" is an isomorphism 

Note that 

Then 

~]U--I=(~ A ~I2SA) U--I= ~A I//2I,/-1SA"-I (~A I~ASA) 

{~fl (I//L/-- 1) = ~,8 ( I,/-- 1 ~A I~t 2 S ~A ) 

= A (U)B~,~SA 
--1 A B t~ 

6;A = A ' ( u ? . C  = = * r  

This last equation means that the transformed spinor ~b'= ~Ou-l~ I'~ 
has in the basis s~ the same components that 0 has in the basis A-~(u)Basa 
in Ix. 

A A 
B6. Here we consider the spinorial metric. We define the metrics/3,/3' 

by 

/3: I~ x Ix-~ C, /3(qJ, ~b) = 2(E1Eo0~b)o 

[3': I ' ~ x I ~ C ,  /3'(~b', ~b') = 2(E ~E~q/~b')o 

We have the identities: (i)^ /3(0,~b)=/3(uqJ, u~b); (ii) /~'(~0';~b')= 
/3'(~ 0"-I, ~ bu-~) =/3(0, qS); (iii) /3'( uOu -I, ud~u -1) = ~(  0, r ). 
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